EEEEEEEEE
NNNNNNNN
AAAAAAAAAA

LLNL-TR-661895

Effects of a Nonlinear Induced
Electric Dipole Moment at 1w

J. Trenholme

October 2, 2014



Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States government or Lawrence Livermore National Security, LLC. The views and opinions of
authors expressed herein do not necessarily state or reflect those of the United States government or
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product
endorsement purposes.

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore
National Laboratory under Contract DE-AC52-07NA27344.



NovLipos poc

Monday, February 1, 1993 5:05pm

To: Nonlinear Propagators
From: John Trenholme
Subject: Effects of a Nonlinear Induced Electric Dipole Moment at 1o

This version has WFW {eq} codes in the equations

Summary

This memo begins with a survey of the present knowledge of nonlinear propagation
effects at 1o in isotropic materials (i.e., glasses) due to an induced electric dipole moment
which has a small nonlinear field dependence. The important effects are phase retardation,
ellipse rotation, and small-scale ripple growth. The analysis is then extended to the case of
strong beams at a large angle, as in a zig-zag slab amplifier.

Maxwell's Equations in a Nonlinear Medium

We follow the usual electromagnetic wave treatment here, but take care to allow for
the possibility of a nonlinear component to the induced electric dipole moment per unit
volume. To maintain sanity, we limit the complexity of the resulting expressions by
considering only stationary isotropic media, including isotropy of the nonlinear response.
This will work for propagation in unstressed glass, but we will have to do the real job in
crystals (even cubic crystals like NaCl, since they can and often do have anisotropic nonlinear
response). Units are rationalized MKS (meaning no 47's will appear).

Let's get an equation for the electric field. We start with the Maxwell equation

oB
VXE—-E

and take its curl to get
%,
VXVXE=-7(VXB).

We now have to introduce the magnetic response of the material to the fields. We
assume it to be linear, instantaneous and isotropic, so that

B=p, (HtM)=pH .

The most likely case is that the material is nonmagnetic so M = 0 and therefore p = B, We

now have
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0

VXVXE=-ME

(VXH) .

Another of Maxwell's gems can be used to simplify V X H, which is equal to the sum
of the real and displacement currents:

o}
\&)

I

VXH=J+

D

t

We dismiss the possibility of any real current J by forbidding source currents and requiring
the material's conductivity ¢ to be zero, so that

cE=0

which leaves us with the displacement current 0D/6t as the only current. We now have

vxvxe--u 2B

At this point, the induced electric dipole of the material comes on stage. We recall
that

D=¢,E+P

where P is the electric dipole moment per unit volume in the material. In a linear isotropic
dielectric with instantaneous response the only moment would be that induced by the field (no
electrets) and we would have the relation

E=80XE

so that
D=¢,(1+X) E=¢E

with X (and therefore €) a scalar constant. In a nonlinear dielectric, on the other hand, X
depends on the local field E (more on this later) and so X and € are not constant in either space
or time. We will, however, assume that the nonlinear moment depends on the instantaneous
local field E, just as we assumed the linear moment did.
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Returning to Maxwell, we have

o (oD o2
VXVXE:'“E[a—_J='”§[Z(EE)

and we simplify this by use of the identity
VXVXE=V (V-E)-V2E

to get
02
V2E=p =7 (E) + V (V-E) .

Note that V2 on a vector is not the same as V2 on a scalar, although they are similar in
rectangular coordinates.

We deal with the V-E term by the use of Maxwell's equation
V-D=p

and proceed to summarily forbid free charge in the same autocratic way in which we refused
to consider current sources. Then we have (recall that D = gE)

V-D=0=V-(eE)=¢V-E + E-Vg

so that

which shows that V-E is non-zero in a charge-free material only if £ varies in space. For an

isotropic material, this happens only in the presence of a nonlinearity. In fact, if we separate €
into its vacuum, linear dielectric and nonlinear dielectric parts we have

e =g, (1+X) =g (I+XL+AN)

and see that the only part that varies in space and gives a contribution to the gradient is the Xy
part. We then have
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By similar reasoning, we can rewrite the second time derivative of €E in terms of the
linear and nonlinear parts as

&2 2E 2
E}t_z (EE) =Ep (H_X)EZ_ + EZ(XN_E_)} g

Our final result is an equation for E which incorporates Maxwell's equations and
allows for the existence of an induced electric dipole moment which depends nonlinearly on
the applied field. We write it in a form which has the linear terms on the left and the
nonlinear terms on the right:

02E 62 E-VX
V2E - pe, 57 = Heo 37 (UINE) - V[ 1+xN

For convenience, we have used the definition

e, = €o(1+XL) -

Propagating Waves

Now (at last!) we can propagate some waves. First, consider the solutions of the linear
equation (which we get by setting the right-hand side of the wave equation to zero)

This is known as the vector Helmholtz equation. It's easy to show! that a general solution to
this equation is

E=§f(t-ﬁ-zxjﬁ)

where () is an arbitrary function, U is a unit vector in any direction, and ﬁ is a unit polarization
vector perpendicular to . These solutions are plane waves moving in the 1 direction. They

I see, for example, section 11-2 of CLASSICAL ELECTRICITY AND MAGNETISM by Panofsky and
Phillips
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have no variation in the plane perpendicular to U, and move at a constant velocity v = 1/A[pey.
It is one of the famous triumphs of physics that if we use the vacuum values 1 and g, we find
this velocity is the speed of light

1

V=C=m &

Inside a material, this velocity is changed to the velocity

1 [
V= = M:E
/L€ Hep 1

where n is the refractive index, defined as

NN I TGS 25)
Hogo Lo

In a non-magnetic medium p = py and

n=+/1+Xp .

For glasses used in lasers, we recall that n = 1.4 so the numerical magnitude of X is about
unity in such glasses. Note that the reason for a reduced velocity in a material is the addition
of an induced electric dipole moment in phase with the vacuum moment g(E.

In a stationary, isotropic, linear, charge-free, source-current-free, nonconducting,
nondispersive medium (commonly referred to as "free space", although we here allow the
presence of a linear dielectric), the total electromagnetic field can always be expanded as a

sum of these plane waves with two orthogonal polarization vectors ﬁ for each direction 1.
Since the governing equation is linear, these waves do not interact. In the presence of a
nonlinearity, the propagation velocity of waves is changed, and waves are coupled. We will
only consider cases where these velocity changes and wave mixings are small.

Sinusoidal Waves

For lasers, we are interested in waves narrowly spaced around one frequency.
Restricting our attention to near-monochromatic sinusoidal waves leads to considerable
simplification. At any point in space, a sinusoidal wave oscillates as

sin(ot - ¢)
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where o is the angular frequency (radians per second) and ¢ is a constant phase. We have
chosen to use the trigonometric form here rather than the more common complex exponential
form because of the well-known problems with the evaluation of powers of fields when using
complex exponentials. We now write the general propagating wave above as

£ (t-fr/per ) =sin(ot - ki - 9)

by multiplying the argument of the function through by ®. When we do that, we find that the
magnitude of the propagation vector kK is given by

where A is the wavelength in the material and A, is the wavelength in vacuum. The general
monochromatic wave is therefore of the form

E =9 Asin(ot - kr - ¢)

and any monochromatic field can be expanded with two orthogonal polarizations and two
orthogonal phases per k, and with k values pointing in all possible directions.

With this form of the wave, we have the simple result
V2E =- kZ2E

for the space derivative in the linear plane wave equation. Recall that k is a scalar equal to the
magnitude of k. The time derivative becomes

02E
HeL 57 = -o2per, E

and the wave equation is

52 E-VX
[02uer, - k2] E = peg o2 (XNE) - VL 1+XNJ

Once we are monochromatic, we can relax the assumption of constant response at all
frequencies ("instantaneous response") and allow € to depend on the frequency ® that we are
using. Allowing such a dependence will permit us to do problems with dispersion.

The Local Electric Field
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In any volume much smaller than a wavelength but large enough to contain many atoms, we
can always find a plane in which an arbitrary sum of monochromatic applied fields lies, and in
which that sum of fields is composed of right circular and left circular polarization
components

E:C%R+D/éL

where the polarization basis vectors are given by

A N,
A _ acos(ot)+ bsin(ot)

€p < ’\/5

A e,
A _ acos(ot) - bsin(ot)

€L = —\/5

The unit vectors a and g lie in the field plane and are at right angles. To see how we can

always get this form for the local field, add up the fields along X, ¥ and Z due to all k and ﬁ and
¢ components of all the waves in the field. The general result will be

X [Exc cos(ot) + Exg sin(ot)]
+§ [Eyc cos(wt) + Eyg sin(ot)]
+ 2 [Eyc cos(ot) + E g sin(mt)]

We now add up the cosine and sine parts separately to get
E = E; cos(ot) + Eg sin(ot)
where the vectors associated with cosine and sine are
Ec=XExc +3\’Eyc +2Bge
and

ESZQEXS-F?E)ZS"{"%EZS .
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Since E is formed from a linear combination of two vectors, it must always lie in the plane
defined by those two vectors. Therefore, the most general monochromatic field is locally
planar.

We put the field into circular polarization form by separately decomposing the linearly
polarized cosine and sine parts, and adding them. Since a linear polarization is a sum of equal
parts right and left circular polarization, we have

The local field above is not in the form of an elliptic polarization unless Eg is
perpendicular to E; , which is usually not the case. We can, however, always find a set of
orthogonal axes in the field plane which do give elliptic polarization. In the plane defined by

A
E, and E , introduce orthogonal coordinate vectors 2 and b. Find the components of Eg and
E_ along these vectors and write

[2-Es sin(ot) +3-E. cos(ot)]

A
a
A A A

b [b-Eg sin(ot) + b E¢ cos(ot)] -

+
[f these components are to be in quadrature, the electric field must have the form

E =C; asin(ot+) + Cy i; cos(ot+C)

where C is a common coordinate rotation angle chosen to put E in this form. We can expand
this to

E-= Cq1 2 [sin(ot) cos(C) + cos(mt) sin(Q)]
+Cp B [cos(ot) cos(C) - sin(wt) sin(C)]

Comparing the two forms for E, we see that we must have

o>
m

-

>

e S

tan(C) =

Im (|m
o

o>
o>
Irm

S c

If we define o as the angle from 4 to Eg and P as the angle from Eg to E, , then the above
relationship becomes
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E.-E; cos(a+P) sin(a+p) + Eg-Eg cos(at) sin(a) = 0
which solves to give

sin(2[3)

1
= — _1 E 'E
o 2‘[.':111 E=5k=g +cos(2B)
E.E.:

We find cos(p) from the normalized dot product of E and Eg , and get cos(2) and sin(2p3)
from cos(B). This demonstrates by construction that the local field is always planar and has
elliptical polarization, a fact which will greatly simplify the next section.

Nonlinear Induced Electric Dipole Moment

In a nonlinear medium, the induced electric dipole moment has an added component
which depends nonlinearly on the local electric field. If the medium is isotropic, the induced
moment must lie in the direction of the applied field, and have a magnitude which depends
only on the magnitude, but not the direction, of the applied field. It must therefore depend

only on E times the dot product E-E , or on E times integer powers of E-E. We assume the
induced electric dipole moment P is mostly linear in the applied field, and expand it in powers

of E*E in the form
P=gg[X1+%3 EEE+X5(E-E)2+..]E

where g(X| E is the usual linear induced moment. Ignoring terms beyond y3 as too small to

matter, we concentrate on the y3 E-E term. Note that X is unitless, but X3 has the units
[ﬁeld‘2]. From the previous section, we know that the local field is of the form

A
E = A 2 sin(ot) + B b cos(ot)
where 4 and B are at right angles. Then the dot product is

E-E = A2 sin2(0t) + B2 cos2(ot)
and so the moment has the form
E= ggX1 E
+ goX3 4 [A3 sin3(ot) + AB2 sin(ot) cos2(ot)]
A
+ g0X3 b [AZB sinZ(ot) cos(ot)+ B3 cos3(at)]
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This somewhat unpleasant result can be simplified by rejecting the harmonic terms. From
trigonometry, we have

3 sin O - sin 36

sin3 0= 7
W
Bl B o sin O 4sm 30
50 cod Bm cos 0 —4003 30
+
c0s3 0= 3 cos 6 + cos 36

4

from which we see that the nonlinear induced moment has components at ® and at 30. We
assume that the 3 components are not phase-matched, and therefore do not affect our results
(more on phase-matching later). This means we need to keep only the 1o parts. The moment
at lo is

2412 2 + 3R2
P =¢pX1 E +¢gpX3 [ [M—4—]?’—] A asin(ot) + [A%] Bb cos(mt)}

which can be written as

P=ego {[X; +3% (A2+B2)] E

+7%3 [B2A 4 sin(ot) + A2B beos(ot)]} .

We can understand this by considering some special cases. First, consider the case of linear
polarization, which has A # 0 and B = 0. The moment becomes simply

3
P=gy(X +7%3A2)E .

Next, consider circular polarization, where A = B. We require the circularly polarized field to
have the same energy density (locally) as the linearly polarized field. This energy density is
proportional to the time average of E-E, which is (A2 + B2)/2, so we must have both
components reduced by the square root of 2. Then in terms of the coefficient A of the linear
field, the induced moment is
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1 1

P=gy| % +ZX3 [A_2+A2] E=¢y(X +§X3 AZ)_E_ .
2 2

This induced moment is 2/3 of the amount due to linearly polarized light of the same local

intensity.

The general case is found by use of the full formula. The main point to note is that
when we use linear polarizations as our basis, each polarization of the induced nonlinear
dipole moment has a component proportional to the intensity of the applied field of that
polarization, and also a component proportional to one-third the intensity in the quadrature
polarization. It is therefore incorrect to say that the applied electric field raises the refractive
index, since there is a cross-coupling of polarization components as well.

It is interesting to change our polarization basis from linear to circular. The base
polarizations become right and left circular, with the general field being given by

& 4 sin(ot) + b cos(ot)
E- P

- 2 sin(ot) - b cos(ot)

.\ﬁ

We write this as
E =C gR +D gL
for compactness.

The factors of \ﬁ are used so that A =1 and C = 1 (for example) will have the same local
energy density. With these basis vectors, the induced dipole moment at 1® can be written as

C2 +2D2 2C2 + D2
P= £0X1 E+80X3[(—2——]C3R+(——§— D@L

+go{[X1 +515(C2 + D2)] E+5 %3(D2C % + C2D &)}

which shows that the opposite circular polarization has twice the effect on a circular
polarization component as the effect of that circular polarization on itself. This is because

E-E is constant in time for pure circular polarization, but any small addition of the opposite
circular polarization causes temporal modulation of €.
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Propagation of a Single Plane Wave

Let us now consider the propagation of a single plane wave in the presence of a
nonlinearity. We assume that the electric field is of the plane-wave elliptic form

N
E = A asin(ot - kr) + B b cos(ot - k-r)
where we have dropped a constant phase ¢ by redefining the origin of time. Note that we may
have to rotate our coordinate system around k in order to get this pure elliptic form, just as in
the local electric field section. Since VXy is along k for this field, E-VXy is zero and the only
nonlinear term is the second derivative with respect to time. Also, the local electric field is

the same everywhere (except for a trivial phase factor) so we can write the wave equation for
the 1o field as

[02per, - k2] E = [0Zpeg(1+1r) - k2] E =

3A2 + B2 A2 +3B2
~02pggX3 { {TJ A 3 sin(ot - kr) + [T B g cos(ot - kr) |-

throughout all of space.

As before, we first consider the case of linear polarization with A # 0 and B=0. We
get

[02ugq(1-X+3%3A2) - k2] E =0

which gives a propagation velocity of

1 Vi,

il 3 T 3X3A2
go(1+X HX3A2 Bl Lt
\/u o(1+XL+7X3A%) L+ 2

where vy is the velocity with only linear dielectric response

_ 1

V e e
b fueo(1+X1)

We have found a self-consistent solution in which the wave remains a plane wave, but in
which its velocity of propagation is changed. Under our assumption of small nonlinear
effects, we can expand the square root to write this velocity as
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= % | 3X3A2
V = Vi, 8(1+XL) ;

If we propagate the wave a distance L at this velocity, its phase (in radians) will be different
from that of a wave propagating at a velocity v; by the amount

B = (k)L = QUL _ 0 3X3ASL  3mut3AZL
- = S50 HaM s

This phase delay is the famous B integral. In terms of the usual nonlinear coefficient y of the
material, the B integral for a single plane wave of one polarization is defined by

L
2
B = RJ}/I ds
0

where [ is the intensity of the wave.

Propagation of Two Near-Collinear Waves

................. Not ready for prime time

Propagation of Two Waves at a Large Angle

---meemmenmm=--- Not ready for prime time



